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Abstract

In this master thesis, the relation between facial expressions/body pose and the
subject’s engagement level is investigated in e-learning environments. We propose
an end-to-end deep learning-based system that detects the engagement level of the
subject given the video of the subject while watching educative material. The three
main components of the model are feature extraction, feature aggregation, and
sequence modeling. The proposed model achieved state-of-the-art results in two
publicly available datasets. In addition to that, the integrated gradients method
is used to analyze feature importance and results showed that head pose and eye
gaze-related features are the most effective facial expressions/body pose features in
engagement detection. Finally, the performance of the model is tested on unlabeled
videos collected by the authors and observed that the model is also able to generate
reasonable predictions and distinguish different levels of engagement on videos from
outer sources.
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Chapter 1

Introduction

1.1 Problem Definition

W ith the rise of deep learning and Artificial intelligence during the previous
decade, AI tools become more and more involved in our daily lives. Especially

the outstanding success of deep learning methods in computer vision improved the
performance in many different tasks such as emotion recognition, object detection,
video action recognition, visual tracking, etc. This motivated many researchers
around the world to contribute and improve this area of research and today, deep
learning is the most popular method not only in computer vision but also in many
fields like natural language processing, robotics, medicine, etc. However, the indus-
trial applications of deep learning-based methods are still not at a desirable level due
to high computational costs and the lack of available training data. The potential of
deep learning-based methods was discovered nearly 10 years ago and most of the
firms around the world started to create partnerships with universities and attempt
to industrialize the use of deep learning methods. Thus, the COVID-19 outbreak
last year gave another boost to the technological improvements in many different
sectors. The online working and learning environments became essential in our lives
and tools used for these purposes developed rapidly in a single year.

Recognition of user interaction becomes highly important in a digital environ-
ment. Applications need to be “aware” of the user’s presence when delivering
information[50]. For this reason, automatic analysis of non-verbal communication
becomes crucial in online environments. Some applications in this context includes
engagement detection in online learning [30, 26, 19], social role detection and en-
gagement detection in meetings [68, 24], multi-model emotion detection [32, 55, 56],
bodily expressed emotion understanding [38, 23] etc.

To this end, this thesis aims to explore and extend the state-of-the-art in non-
verbal / body language analysis in collaboration with Barco [1], a company offering
a wide range of products and solutions related to visualization such as health care
solutions, projectors, LED displays, and video walls. One of the most innovative
projects in Barco is the virtual classroom. Barco’s virtual classroom is a cloud-based
SaaS solution where a teacher is in a specifically equipped room while students
connect over the Internet. This is interesting in various education scenarios - such as
corporate training and higher education - where students may be located in different
places around the world. In the figure below, you can see two different use cases
of the virtual classroom, one is for completely online scenario and the other one is
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(a) (b)

Figure 1.1. (a) Barco’s virtual classroom all participants are attending online. (b) Blended
learning, some participants are in-class some are attending online [1]

blended where there are both in-class and online participants.

Barco’s virtual classroom is already providing many technological features to
improve the learning experience and increase efficiency in corporate meetings but
still, non-verbal communication is not as easy as direct interaction, especially in the
online setting. To provide feedback to teachers, students, companies, and employees
both in e-learning and corporate meeting scenarios, it is crucial to detect and analyze
the social signals received from participants. Social signals can be defined as, com-
municative or informative signals which provide information about social facts.[10]
While Social signal processing (SSP) is the computing domain aimed at modeling,
analysis, and synthesis of social signals in human-human and human-machine in-
teractions [10]. Here, we are interested in some sub-task of social signal processing
such as detecting and analyzing the engagement level of participants which can give
beneficial feedback in e-learning environments. Online learners participate in various
educational activities including reading, writing, watching video tutorials, online
exams, and online meetings. During the participation in these educational activities,
they show various engagement levels, such as boredom, frustration, delight, neutral,
confusion, and learning gain. To provide feedback to both instructors and students
online educators need to detect their online learners’ engagement status precisely and
efficiently. In e-learning environments, students are not speaking most of the time.
For this reason, the engagement detection model should extract valuable information
from only visual input. This makes the problem non-trivial and subjective because
people can perceive different engagement levels from the same input video.

In this thesis, we propose an end-to-end deep learning-based system that detects
the engagement level of the subject in an e-learning environment. The input of
the system is the video of a subject recorded while watching an educative material
and the output of the system is the engagement level of the subject for each sub
clip of the input video. The system consists of 3 main parts which are feature
extraction, feature aggregation and engagement prediction with sequence models.
First the input video is passed to OpenFace [8] and OpenPose [11] which are tools
for facial behaviour analysis and body pose estimation. With the help of these
tools, features like head pose, eye gaze, facial action units, and upper body key
points are extracted in frame level. After that, the extracted features are aggregated
with pre-defined aggregation functions for additional feature extraction. Finally, the
features are fed into sequence models to exploit the temporal aspect of the input
video segment and to make an estimation on the engagement level. We believe that
deep learning-based sequence models such as Long Short Term Memory (LSTM)
[29] and Gated Recurrent Unit (GRU) [14] will be a good fit for this multi-feature
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sequence classification/regression task. To train our neural network models, we used
the only two publicly available datasets which are Daisee [26] and Engagement in
the wild [34]. Both datasets are formed from video sequences of subjects watching
educational material and for each video snippet, there is an engagement level label
from {0, 1, 2, 3} where 0 indicates very low engagement and 3 indicates very high
engagement. Both datasets are challenging in terms of few samples and imbalanced
labels which makes the learning procedure harder and deep learning models become
more prone to over-fitting. However, still, the state of the art results (SOTA) are
accomplished by deep learning-based methods so this motivates us to push the limits
of deep learning-based methods. After training our sequence models with Daisee and
Engagement in the wild datasets, we observed that our system can reach the new
SOTA performance in both datasets. For engagement in the wild validation dataset
with a mean square error (MSE) of 0.05011, whereas the previous best MSE was
0.05997. For the Daisee dataset, our model reached an accuracy of 64.42% whereas
the previous best accuracy was 63.9%. In addition to that we used the integrated
gradients method [48] to analyse the most effective features for the engagement
detection task. We found out that head pose and eye gaze related features are most
important for the proposed model. Finally, we also tested our system on a small
group of individuals to observe the expected performance of the product when it
will be deployed. The results show that the proposed model is able to generate
reasonable predictions and distinguish between different levels of engagement.

The rest of this thesis is organized as follows;

In Chapter 2 We will introduce the background information needed to create a
better understanding of this work. Namely, we will describe theoretical aspects of
the methods and tools we used in our pipeline. Then, we will present the current
literature on engagement detection in e-learning environments. First, we will give
details about the two datasets Daisee [26] and Engagement in the wild [34] we
used for training our model. After, we will present SOTA approaches and common
pipelines for the engagement detection task.

In Chapter 3 We will give more details about Daisee and Engagements in the
wild datasets and make an exploratory data analysis for both datasets. Moreover,
we will investigate the extracted features with OpenPose and OpenFace. Finally, we
will create simple baseline models for both datasets.

In Chapter 4 We will describe our model architecture in detail.

In Chapter 5 We will present our training procedures for both engagement
classification with the Daisee dataset and engagement regression with Engagements
in the wild dataset. After that, the experimental results will be reported with new
SOTA results and feature importance will be shown with interpretability methods.
Finally, we will show some examples of how the model is performing in real life and
evaluate its applicability in a demo product.

In Chapter 6 the project will be discussed with its strong and weak sides and
some possible future road maps will be mentioned.
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Chapter 2

Background and Related Work

In this chapter, we will introduce some background knowledge to create a better
understanding of the solution methods to the engagement detection problem. First,
we will introduce OpenFace [8] and OpenPose [11], as feature extraction methods
from videos. After that, we will describe the feature aggregation methods and tsfresh
[15], a tool to extract characteristics from time series. Then, we will describe the
Sequence models used to exploit temporal information in videos. Moreover we will
describe the integrated gradients method [48] used for model interpretability and
feature importance. Finally, we will mention current literature in this domain with
publicly available datasets and SOTA models.

2.1 Feature Extraction
Feature extraction is an important phase in the predictive model pipeline for

any machine learning task. We all know that the quality of the features dramatically
affects the model performance. In social signal processing and human behavior
analysis, Facial expressions and body pose give many clues about the emotional
state of an individual. This is also true for engagement detection in e-learning
environments. In the works [63, 30], authors use open source tools OpenFace [8] and
OpenPose [11] to extract features many different features such as face landmarks,
eye gaze, facial action units, head pose, and full-body pose.

2.1.1 OpenFace
OpenFace is the first open-source tool capable of facial landmark detection, head

pose estimation, facial action unit recognition, and eye-gaze estimation. This tool is
developed by combining methods that are generating state-of-the-art results for all
the tasks above. By using this tool, we are able to extract 720 facial features related
to eye gaze, head pose, facial landmarks, rigid and non-rigid face shape, facial action
units, and histogram of oriented gradients (HOG). In figure 2.1, you can see a frame
from the daisee dataset before and after feature extraction with OpenFace. In the
rest of this part, we will focus on algorithms that are used in the OpenFace tool and
how the feature extraction pipeline is constructed.

OpenFace Pipeline

OpenFace pipeline consists of 4 stages which are;

• Facial landmark detection and tracking
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(a) (b)

Figure 2.1. a is a frame from the Daisee dataset. (b) is the same frame with OpenFace
features

• Head pose estimation

• Eye pose estimation

• Facial expression recognition

OpenFace uses Convolutional Experts Constrained Local Model (CE-CLM) [66]
for facial landmark detection and tracking. This algorithm consists of 2 parts.
Response map computation using Convolutional Experts Network (CEN) and shape
parameter update using a Point Distribution Model. The CEN network estimates
each landmark individually and independently of the position of other landmarks in
the forward pass. While updating the parameters, the position of all landmarks is
updated jointly penalizing misaligned landmarks and irregular shapes using a Point
Distribution Model (PDM). Finally, the local appearance variations are modeled by
patch experts. In figure 2.2, you can see the overview of CE-CLM pipeline. The
correction Network is used for dataset-specific corrections for CE-CLM and the
adjustment network and the adjustment network is for mapping 64 facial points to
84 point space.

In the OpenFace implementation of the CE-CLM model, some adjustments
are made for speeding up optimization and to allow real-time performance. First,
they retrained the patch experts (which is a deep neural net with approximately
180000 parameters) by using a deep neural network with half-size (approximately
90000 parameters. Second, they introduce the idea of smart multiple hypothesis. In
the original work, CE-CLM uses multiple initialization hypotheses (11 in total) at
different orientations to deal with hard images such as profile faces and occlusion.
During fitting, the model with the best-converged likelihood is selected. This is
crucial for e-learning environments because people generally touch their faces when
watching lectures and this creates occlusions for facial landmark detection. However,
this also slows down the approach. To speed up, an early hypothesis termination is
applied based on the current model likelihood in the OpenFace application. Finally,
in the original work, the response maps for each facial landmark are calculated
in a dense grid around the current landmark estimate. Here the authors used a
sparse grid instead of a dense grid to speed up. More details for the performance
improvement adjustments and implementation details are presented in [8].
The head pose estimation can be easily done by using the same CE-CLM model
used for facial landmark detection. This is possible because CE-CLM uses a 3D
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Figure 2.2. This is an image from a text that uses color to teach music [8].

representation of facial landmarks and projects them to the image. In this way head
pose can be estimated by solving the n point in perspective problem with detected
facial landmarks [28].
Next, the eye gaze estimation is needed to be done. For this task, a Constrained
Local Neural Field (CLNF) landmark detector is used to detect eyelids, iris, and the
pupil [60]. This model [7] is originally designed for face landmark detection but for
detecting eyelids, iris, and the pupil, the model is trained on SynthesEyes dataset
[60]. The detected pupil and eye location are used to calculate the gaze vector for
each eye.
Finally, the facial expression recognition is done by using the SVM-based model
suggested in [6]. In the figure 2.3 the architecture for detecting facial action units
is presented. The model takes the input image with detected facial landmarks
and then computes the HOG for the aligned and masked face. After that, a PCA
dimensionality reduction is applied to HOG features and geometric features are
extracted from the original image. Finally, all extracted features are fed into an
SVM classifier for the Action unit classification task. The Labels are presented in
the figure 2.4

Figure 2.3. The model architecture of Facial Action Unit recognition[8].
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Figure 2.4. Description and illustration of the f Facial Action Unit [8]

2.1.2 OpenPose
OpenPose is the first real-time multi-person system to jointly detect human body,

hand, facial, and foot key points (in total 135 keypoints) on single images. In figure
2.5, you can see some snapshots from the Emotiw dataset after pose detection with
OpenPose. The model takes a colored image as input and outputs the 2D locations
of anatomical key points for each person in the image.

First, a CNN predicts a set of 2D confidence maps of body part locations and
a set of 2D vector fields of part affinity fields (PAFs), which encode the degree of
association between parts. Then, the confidence maps and the PAFs are parsed by
greedy inference to output the 2D keypoints for all people in the image. In figure
2.6, you can see the complete pipeline of the system.

In figure 2.7, you can see the CNN architecture generating the Confidence Maps
and PAFs. The first block shown in blue predicts the Affinity fields and then the
detection of confidence maps with the second block shown in beige. The Input F
of the first block is the feature vectors of images generated by the first 10 layers of
a fine-tuned VGG-19 [47]. The set of Part Affinity Fields are a function of VGG
features at time t and PAFs at time t− 1. The function is shown by φt which refers
to the CNN block in blue.

Lt = φt(F, Lt−1) ∀t 2 ≤ t ≤ Tp

Tp is the total number of PAFs predictions. After Tp iterations, the process
is repeated for the confidence maps detection, starting in the most updated PAF
prediction,

STp = ρt(F,LTp),∀t = Tp

St = ρt(F,LTp ,St−1)∀Tp ≤ t ≤ Tp + Tc
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(a) (b)

(c) (d)

Figure 2.5. different snaphots from Engagement in the wild dataset with OpenPose pose
detection.

Figure 2.6. the overall pipeline of the OpenPose pose estimation model[11]
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where ρt refers to o the CNNs for inference at Stage t and Tc to the number of
confidence map stages. For both stages, the loss function between predictions and
ground truth is the L2 loss.

Figure 2.7. CNN architecture for Confidence Map and Part Affinity Field prediction [11]

After detecting the body parts, the next problem is combining them and ensuring
that the combined parts belong to the same person. Although in Daisee and
Engagement in the wild datasets there is only a single subject in the sceen mos
of the time and this problem is not in our scope, OpenPose is a strong tool when
it comes to estimate poses of multiple people. PAFs preserve both location and
orientation information across the region of support of the limb. For each pixel
in the area belonging to a particular limb, a 2D vector encodes the direction that
points from one part of the limb to the other. Each type of limb has a corresponding
PAF joining its two associated body parts.

2.2 Feature Aggregation
OpenFace and OpenPose provide much information about facial expressions and

body pose at the frame level. After extracting this useful information, one can use
consider this information as different time series changing throughout the video and
conduct multiple time-series analyses. The feature aggregation step is important
because it can exploit different characteristics of the time series. For example in
e-learning scenarios, if the subject is looking at different places, this can be a sign of
low engagement. The variance of the eye gaze vector in a window can give infor-
mation about the engagement level for a specific part of the video. Based on this
idea, we did experiments on our datasets with different aggregation functions such
as mean, maximum, minimum, etc. for different window lengths. While doing these
experiments, we used tsfresh [15], an efficient, scalable feature extraction algorithm
for time series. Tsfresh provides many different feature extraction functions. Among
these, we considered simple statistical aggregation functions and frequency domain
functions. The simple statistical aggregation functions are mean, maximum, mini-
mum, variance standard deviation, and length. The frequency-domain functions are
the spectral centroid (mean) and variance of the absolute Fourier transform spectrum
and the Fourier coefficients of the one-dimensional discrete Fourier Transform. Since
the Fourier transform extracts information about the cyclic patterns in time series,
we believe that it can provide useful information for the aggregated parts of the
feature sequences.
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2.2.1 Fourier Coefficients
Calculates the fourier coefficients of the one-dimensional discrete Fourier Trans-

form for real input by fast fourier transformation algorithm.

Ak =
n−1∑
m=0

am exp{−2πimk
n
}, k = 0, . . . , n− 1.

2.2.2 Spectral Centroid
It is calculated as the weighted mean of the frequencies present in the signal,

determined using a Fourier transform, with their magnitudes as the weights.

2.3 Sequence Models

Figure 2.8. Inner mechanism of LSTM (left) and GRU (right) cells. [44]

2.3.1 LSTM and GRU
In figure 2.8, you can see the illustration of LSTM and GRU cells. LSTM

and GRU models are frequently used to exploit the temporal aspect of video data
[65, 57, 33]. LSTM and GRU are a type of Recurrent Neural Networks (RNN).
Vanilla RNNs suffer from vanishing gradients so they are not capable of storing
information from the past when the input sequence is long. In other words, vanilla
RNN suffers from short-term memory. However, LSTM and GRU models have inner
operations called gates that are regulating the flow of information, and only the
relevant information from the input sequence is kept in the memory. For this reason,
these two sequence models are candidate models for the Engagement detection task.
Since a change in engagement, level depends on facial expression and body pose clues
at specific times in a video sequence, LSTM and GRU models can capture these
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important moments and make engagement level decisions for short and long-duration
videos.

2.4 Model Interpretability
2.4.1 Integrated Gradients

Integrated gradients represents the integral of gradients with respect to inputs
along the path from a given baseline to input. [48].

IntegratedGradsi(x) ::= (xi − x′i)×
∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα

In the formula above, the function F represents the neural network. More
specifically in the engagement detection task, the F function is the sequence model.
xi represents the ith feature of the input and x′i represents a baseline for the ith
feature. For image networks, the baseline could be the black image, while for text
models it could be the zero embedding vector. In this engagement detection task, the
features are sequential facial and body pose features. So for each feature such as eye
gaze and head pose, the baseline would be the average value of the feature sequence.
The Integrated gradients method considers a straight line path from the baseline
to the input and computes the gradients at all points along the path. Integrated
gradients are obtained by cumulating these gradients.

2.5 State-of-the-art on Engagement detection
2.5.1 Datasets for e-learning Environments
Daisee and Engagement in the wild

For e-learning environments, the datasets are mostly created to detect the en-
gagement level of students [19]. DAISEE dataset [26] differs from the others in this
sense. DAiSEE is a multi-label video classification dataset comprising of 9068 video
snippets captured from 112 users for recognizing the user’s affective states. Each
video snippet is 10 seconds long and for each snippet, there are 4 different affective
states labels as {Boredom, Confusion, Engagement, Frustration } and each label has
a score as { Very Low, Low, High, Very High}. Many papers used this dataset and
tried to improve the performance [30, 50, 18, 37, 39, 45]. This gives us the chance
to compare our model with other applications.

Engagement in the wild is the sub-task in the Emotion Recognition in the Wild
(EmotiW 2018) challenge [20]. The dataset is pretty similar to Daisee.The annota-
tions are made by a team of 5 and the engagement of each subject is scored from
0− 3, the same as in the Daisee dataset. The distribution of videos in the dataset is
as follows 9 videos belong to level 0, 53 for level 1, 82 for level 2, and 50 for level 3.
Further details about the datasets as well as an in depth analysis will be provided
in Chapter 3.
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Other Datasets not publicly available

The Affective database for e-learning and classroom [3] is a new effective database
using the students’ facial expressions, hand gestures, and body postures. The labels
for this dataset are { happiness, sadness, surprise, fear, disgust, anger, engaged,
sleepy, boredom, frustrated, confuse }. Unlike other e-learning datasets, this set also
includes hand gestures and body postures which are relatively more important in
in-class lectures and corporate meeting scenarios. In addition to that, the additional
annotations give the chance to use multi-modal architectures which is not possible
for most of the e-learning datasets. Besides these advantages, this dataset also has
similar limitations to DAISEE like lack of ethical diversity, unbalanced distribution of
gender, and crowd-sourced annotations. Also, this fairly new dataset is not available
to the public yet, and there are not many studies using this dataset. Another very
recently realised dataset is Student Engagement Dataset [17]. This is a dataset of
college students solving math problems on the educational platform MathSpring.org
with a front facing camera collecting visual feedback of student gestures. The video
dataset is annotated to indicate whether students’ attention at specific frames is
engaged or wandering. Unlike other dataset, this dataset contains samples with
ethnic diversity. However the dataset contains only 19 students and the annotation
is made crowd-sourced.

2.5.2 Engagement Detection Models
One of the first attempts to investigate the relationships between facial features,

conversational cues, and emotional expressions with engagement detection is pre-
sented in [21]. Later on in [59, 25] authors used the Facial Action Coding System
(FACS) which is a measure of discrete emotions with facial muscle movements, and
point out the relation between specific engagement labels and Facial actions. Also in
the work [59], authors show that automated engagement detectors perform with com-
parable accuracy to humans. All these works were using classical machine learning
classifiers such as Gentleboost and SVM. After the deep learning revolution, more
works with deep learning methods emerged. For example in [9] authors compared
the performance of an LSTM based method with SVM and KNN methods. Unlike
previous works, they considered engagement detection tasks both as classification
and regression problems. They also used many non-verbal features such as Facial
landmarks, FACS, Mean and median average optical flow velocities and average
direction vector, Head size and pose, Facial geometric features. Moreover in [18],
authors proposed a Local Directional Pattern (LDP) to extract person-independent
edge features for the different facial expressions and Kernel Principal Component
Analysis (KPCA) to capture the nonlinear correlations among the extracted features.
After that, a deep belief network is trained to make classifications. The experiments
are conducted on two-class and three-class classifications tasks and DAISEE dataset
[26] is used.

DAISEE [26] dataset is pretty popular for e-learning engagement detection tasks
and there are many works other works using this dataset. For example in [30],
authors propose a model: Deep Engagement Recognition Network (DERN) which
combines temporal convolution, bidirectional LSTM, and attention mechanism to
identify the degree of engagement based on the features captured by OpenFace [8].
Moreover in [37] a model called the Deep Facial Spatiotemporal Network (DFSTN)
is proposed. This model contains a pre-trained SE-ResNet-50 (SENet), which is
used for extracting facial spatial features, and an LSTM with global attention for
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sequence modeling. The attention mechanism yields the discriminative attentional
hidden state with the LSTM, which improves the experimental results effectively.
Finally in works [50, 39, 45] authors used relatively simple models which are based on
Convolutional Neural Networks (CNN) and Residual Networks (ResNet)[27]. All the
works above consider the engagement detection problem as a multi-class classification
problem and to the best of our knowledge, the most recent and state of the art
performance for the DAISEE dataset is achieved by Abedi et al. [2] where they used
a Resnet50[27] model to create a one-dimensional embedding vector in frame level
and then used a Temporal Convolutional Network (TCN) [4] for temporal analysis
of the video frames. They achieved an accuracy of 63.9% in the 4-class classification
engagement task and they also reported their confusion matrix, unlike the previous
works. Even though this is the SOTA model for the Daisee dataset, the confusion
matrix shows that the model is good at predicting the high level of engagement
labels correctly but still very bad at detecting the low level of engagement labels.
This may be due to the highly imbalanced number of samples between low level and
high level of engagement labels but if the model is not able o detect the low level of
engagement values, its practical use is highly questionable.

Another very popular dataset for engagement detection in e-learning environ-
ments is Engagement in the wild dataset [34]. This dataset is used in Emotiw
challenges made yearly as mentioned before and this contributed to an increase in
the number of academic papers using this dataset. Unlike works using the Daisee
dataset, in this challenge the engagement detection problem is considered as a
regression problem which is more suitable to practical implementation due to the
subjective nature of the perceived engagement. For example, the work by Yang
et al. [63], presents the winner approach for Emotiw 2018 challenge. Here they
used OpenFace [8] tool for extracting eye gaze and head pose features and for body
posture, they used OpenPose [11]. Moreover, they also extract facial descriptor
vector and body action features vector by using a pre-trained C3D network [53].
After extracting features from 4 different sources, 4 different LSTM units are trained
separately and then the regression results are fused. The results showed that the
best performance is achieved with 2 LSTM units and OpenFace features. Another
successful model for Emotiw 2018 challenge is proposed by Niu et al. [40]. In this
work, the authors created a 117-dimensional feature vector composed of eye gaze
action units and head pose features extracted by OpenFace [8]. After that, they
passed these feature vectors to 3 Gated Recurrent Units (GRU) and fused the 3
outputs with mean pooling. OpenFace [8] features continued to be used also in
the work by Thomas et al [51]. Here authors used the same set of features with
[40] but used a Temporal Convolutional Network (TCN) for the regression task.
One of the best performance in terms of MSE 0.0611 is achieved by Wu et al. [61]
with the model shown below in figure 2.9. This is a common pipeline also used in
[63, 51, 40] and which we also took inspiration from. In this model first sequences of
overlapping frames are extracted by a sliding window approach. Then features like
eye gaze, head pose, etc. for each frame in a window are aggregated with classical
statistics like minimum, maximum, and variance. After that, the resulting sequence
of aggregated features is passed to a sequence model for engagement regression.

To the best of our knowledge, the only work using both Daisee and Engagement
in the wild together is by Liao et al.[37]. In this work, the authors trained their
model on the Daisee dataset with both regression and classification losses and then
tested it on the Emotiw dataset. For both datasets, the performance is far from
SOTA but for the first time, they used a Grad-CAM to visualize the gradients of
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Figure 2.9. Model architecture by Wu et al. [61]

pixels in consecutive frames.
To sum up, we can say that features extracted from various tools such as Open-

Face and OpenPose are frequently used in the engagement detection task. The
general approach is extracting features with these tools and then using a sequential
model which can capture the temporal relations between video frames. Also using
both datasets for training the models is a possible direction to go which is not yet
tried in the literature.
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Chapter 3

Datasets

In this chapter, the DAIEE and Engagement in the wild datasets will be described
and analyzed in detail. More specifically, First, the data collection procedures will
be described. After that, the annotation techniques and reliability of the labels will
be discussed and analyzed. Finally, the relationship between engagement level and
facial features will be analyzed with an unsupervised manner and baseline predictor
models will be suggested for both datasets.

3.1 Daisee
In this section, we will summarize the main characteristics of the DAISEE dataset

to create a better understanding of the main challenges in this problem. First, we
will analyze the annotations and then OpenFace features. For the whole analysis in
this section, a clean version of the training dataset will be used.

DAiSEE is a multi-label video classification dataset comprising of 9068 video
snippets captured from 112 users for recognizing the user’s affective states. The
subjects in the videos are a group of Asian students between the age of 18-30 with 32
females and 80 males. There are 6 different locations where the videos are recorded
such as dorm rooms, crowded lab spaces, library, etc, and 3 different illumination
settings (light, dark and neutral). To simulate the e-learning environment, a custom
application was created that presented a subject with 2 different videos (20 minutes
total in length), one educational and one recreational to capture both focused and
relaxed settings, which allow natural variations in users’ engagement levels. Each
video snippet is 10 seconds long and for each snippet, there are 4 different affective
states labels as {Boredom, Confusion, Engagement, Frustration } and each label has
a score as { Very Low, Low, High, Very High}. The labels are crowd annotated from
10 different annotators. To remove the unreliable annotators and their annotations,
a weighted Cohen’s κ (score between 0-1) with quadratic weights is given to each
annotator and any annotator whose agreement is less than 0.5 is removed. Then the
remaining annotations(which varies from 4-10 for each video snippet) are aggregated
using Dawid-Skene vote algorithm [16].
In figures from 3.1 to 3.4, you can see the faces of students with varying levels of
engagement, boredom, confusion, and frustration. By looking at the samples, it is
not hard to say that facial features like eye gaze, head pose, or facial action units
will be good features for this classification task.

However, there are some drawbacks to this dataset. First of all the dataset
contains only visual information of Indian students. There is no cultural diversity
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Figure 3.1. Samples from daisee dataset with engagement level varying from very low
(left) to very high right [26].

Figure 3.2. Samples from daisee dataset with boredom level varying from very low (left)
to very high right [26].

Figure 3.3. Samples from daisee dataset with confusion level varying from very low (left)
to very high right [26].

Figure 3.4. Samples from daisee dataset with frustration level varying from very low (left)
to very high right [26].
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and this can be a problem when a model trained with this dataset is used for
European students for example. Also, the number of male and female students
is highly unbalanced and this may cause a lack of accuracy for female students.
Another limitation of this dataset is the ambiguity in labeling the frames with
appropriate engagement levels. In crowdsourcing, ambiguity in labeling frequently
occurs due to not having a clear guideline for mapping facial indicators to different
affective states or engagement levels of the online learners.

Figure 3.5. The histogram of scores for each label category in Daisee dataset

3.1.1 Annotations
As mentioned before, the DAISEE dataset has 4 labels per video clip which are,

Engagement, Boredom, Confusion, and Frustration. In the training dataset, there
are 70 students and 5478 clips each 10 seconds long. The minimum, maximum and
average number of clips per student is 1, 142, 78 respectively. Bellow, you can see
the other summary statistics about the number of clips per student.

• mean: 78

• std: 36

• min: 1

• 25%: 47

• 50%: 86
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• 75%: 109

• max: 142

During the recording process of the dataset, the students are recorded for approx-
imately 20 minutes which refers to 120 clips per student. In the appendix, you can
see figure 6.1, which shows the engagement levels of 22 students having more than
100 clips (more than 16 minutes of recording) as a single time series. Intuitively,
one would expect that the engagement of a student will start high and decrease
slowly because of concentration loss, tiredness, etc. Maybe 16-23 minutes is a short
period of time to observe tiredness or concentration loss but still, we would expect a
smooth graph. However for all labels Engagement, Boredom, Confusion, Frustration
in figures 6.1 to 3.4, we observe label score changes very frequently almost in all
students. The main reason behind this can be the crowdsource annotation of video
clips. Since the annotators are only seeing the 10 second long clips, they do not have
prior knowledge about the previous clips of the same recording. Moreover, we can
also claim that annotators are not very good at distinguishing engagement levels
that are one step ahead of each other. For instance, in the graphs of Students 1,
10, and 18 in figure 6.1, the instant movements between engagement levels 2 and 3
are clearly observable. The reason for that is because annotators are not able to
distinguish whether the engagement level is 2 or 3 and the majority vote for these
clips is probably not better than a random guess between scores 2 and 3. This
behavior of annotators is pretty natural since these engagement level labels are very
subjective especially when deciding on the labels that are one step away from each
other. Unfortunately, the resulting time series of labels for each student is not a
good reflection of the reality since the label scores are changing very frequently in
most of cases.

For each clip in the dataset, there are scores from 0− 3 for all four labels. As
you can see from the histograms in figure 3.5, the score labels are highly imbalanced
for all four categories. Especially for Engagement label, there are so few samples
from level 0 and level 1 and this makes very hard to correctly classify low level
engagement scores as seen in [2, 37].By only looking at the histograms, it is not
hard to see the correlation between labels.Engagement level is negatively correlated
with all the other labels as show in figure 3.6. The highest absolute correlation is
between Engagement and Boredom labels with a score of −0.42. This allows us to
train our model with Boredom labels and then fine-tune with engagement labels. By
this way we can propose alternative solution approach to handle miss classification
of low level engagement because the boredom labels are more balanced compared to
engagement labels.

3.1.2 Survey
Since the reliability of the labels are questionable, we decided to conduct a survey

to measure the human performance on the Daisee dataset. To do that, we selected 60
random samples from the training dataset. Number of samples for each engagement
label 0,1,2,3 are 16,14,17,13 respectively. The survey is created using google survey.
Participants watch the each video with duration 10 seconds and then label the
engagement level with one of the labels from set {0, 1, 2, 3}. In total 15 participants
joined the survey and the final labels are created by majority voting all the votes
from participants. All the participants are European and their age vary between 22
to 45. In figure 3.7, the classification statistics and confusion matrix are present.
Even the number of participants attended to survey is very low, the accuracy of the



3.1 Daisee 19

Figure 3.6. The heatmap of Pearson correlation scores for each pair of label categories

(a) (b)

Figure 3.7. (a) Survey statistics (b) Survey confusion matrix

majority votes are only 35%. This shows that the perceived engagement levels are
very different and it is very hard to create a consensus on labels. We can say that
since all the students in the videos are south Asian, participants of the survey are
not good at judging the engagement levels. There are also some inferences we can
make by looking at figure 3.7. First, as seen in b, people are hesitant to put extreme
labels (0 and 3) to video clips, especially label 0. Second, participants predict the
engagement level 2 with highest f1 score and engagement level 1 with the lowest
f1 score. Third, classification task is not suitable for engagement detection. The
confusion matrix shows that participants labeled majority of zero engagement videos
as one and one and three engagement videos as two. However, accuracy score is not
considering the distance between classes and human predictions are over penalized
in this case.

3.1.3 Analysis on Eye Gaze and Head Pose related Features
Since the main challenge is the small number of samples, increasing the dimen-

sion of the feature space may result in loss of generalization ability. To handle this
problem, we can use some dimensionality reduction techniques such as Principle
Component Analysis (PCA) [42].

In 3.7, we showed that the annotations are not reflecting the reality for all
samples. So, trusting the supervising ability of the labels may result in conflicting
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results in real-life applications. To better observe the separability of our feature
space, we first aggregated sequential information in each video clip and then applied
PCA to reduce dimension. In figure 3.8, you can see the overall pipeline for this
process. First, eye gaze and head pose related features are extracted from each
video snippet resulting in a feature matrix with size 30x12 where 30 is the number
of frames and 12 is the number of head pose and eye gaze features. Then for each
feature, we calculated the following 10 statics to aggregate frame level sequential
information; {mean, variance, standard deviation, minimum, maximum, mean and
variance of the absolute fourier transform spectrum and top 3 fourier coefficients of
the one-dimensional discrete Fourier Transform.}[15]. The resulting 12× 10 = 120
dimensional samples are concatenated for n different video snippets and the resulting
matrix Mn×120 is fed into PCA for dimensionality reduction.

Figure 3.8. The pipeline for extracting principle components from each video snippet.(from
left to right) First, eye gaze and head pose feature extraction. Second, aggregation of
feature sequences with standard statistics, and frequency domain properties. Third,
dimension reduction with PCA.

In figure 3.9, you can see the principle component graphs for 2 different subsets
of the training dataset. Since the dataset is highly imbalanced, In (a) we took all
samples with labels 0 and 1 and as oppose to that selected random samples with
labels 2 and 3. The resulting subset contains 34, 214, 97, 146 samples from all labels
0− 3 respectively. As seen, there is no clear separation between data points in 2D.
This is not surprising because these two principle components are representing only
39% of the total variance. In order to see the effectiveness of eye gaze and head pose
features, we decided to simplify the problem and introduce the subset used in (b).
Here we took all 34 zero-labeled samples in the training set and then randomly select
29 samples with label three. Since we are considering only the two extreme label sets,
eye gaze and head pose features should be more effective in spotting the difference
between labels and the feature space should be more separable. In (b), we observe
a similar behavior to our expectations. Even though the samples are not clearly
separated in the 2D principal component plot (since they are representing 49% of the
total variance), we can say that the inner variance of samples with high engagement
is lower compared to the samples with low engagement and high engagement samples
are more accumulated in the are where PC2 ≥ −5 and PC1 ≤ 3. On the other
hand samples with low engagement are spread around the feature space.

3.1.4 SVM Baseline
With the pipeline shown in figure 3.8, we can use a Support Vector Machine

(SVM) [13], to create a baseline model. After extracting features with OpenFace, we
used tsfresh [15] package to compute feature aggregations. Then the PCA output
and SVM models are created with scikit-learn [43] package. In the table 3.1.4, you
can see the accuracy scores for the different number of PCA components.
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(a) (b)

Figure 3.9. (a) Principle component plot for 491 video clips sampled from the training
dataset containing samples from all 4 labels. (b) Principle component plot for 63 video
clips sampled from the training dataset containing samples from only 0 and 3 labels.

# components accuracy
2 0.4958
5 0.5101
10 0.5288
20 0.5243

3.2 Engagement in the wild
In this section, we will summarize the main characteristics of Engagement in the

wild dataset. Similar to 3.1, first the annotations and then OpenFace features will
be analyzed.

Engagement in the wild is the sub-task in the Emotion Recognition in the Wild
(EmotiW 2018) challenge [20]. The dataset is pretty similar to Daisee. First, the
subject is recorded while watching the stimulus video around 5 minutes long. Then
the subject is given 15 seconds to talk about the video and asked whether it was
engaging or if they find it interesting or any comments/suggestions on how the
video could have been made more engaging? The content of the selected videos is,
Learn the Korean Language in 5 minutes, a pictorial video (Tips to learn faster)
and How to write a research paper. The dataset has 78 subjects (25 female and 53
male) in total. The age range of the subjects is 19-27 years. A total of 195 videos
are collected, each approximately 5 minutes long. The dataset is collected in the
unconstrained environment i.e. at different locations such as computer labs, hostel
rooms, open ground, etc. [34]. The videos are captured via a Skype video call and
it was made sure that the subject was not disturbed by the Skype recording. The
annotations are made by a team of 5 and the engagement of each subject is scored
from 0 − 3, the same as in the Daisee dataset. The distribution of videos in the
dataset is as follows 9 videos belong to level 0, 53 for level 1, 82 for level 2, and 50 for
level 3. The annotator reliability is assessed with a weighted Cohen’s κ coefficient
similar to the Daisee dataset and label votes of any annotator with coefficient 0.4 is
removed. After that, the labels are averaged and rounded off to the nearest integer
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to give a ground truth engagement rating to the video.

Figure 3.10. The histogram showing engagement level distribution for Engagement in the
wild dataset.

3.2.1 Annotations
Engagement in the wild dataset is smaller in sample size compared to DAISEE.

It includes 147 training and 48 validation videos. Each video is around 5 minutes
and like the DAISEE dataset, some subjects have more than one video. While most
of the subjects have only one video, there are 18 subjects with 5 or more videos.
As you can see in appendix figure 6.5, most of the students show low engagement
through the end of the video recording. The recording times vary from 25 minutes
to 45 minutes with an engagement label per 5 minutes. Since it is easier to judge
engagement for 5 minutes rather than 10 seconds and longer recordings allow more
clear observations of change in engagement levels, we can say that Engagement in
the wild dataset is more reliable compared to Daisee. Moreover, the samples are
more balanced. In figure 3.10, you can see the histogram showing engagement label
distribution for the whole dataset.

3.2.2 Analysis on Eye Gaze and Head Pose related Features
The OpenFace features and aggregation statistics used for Engagement in the

wild dataset are the same as described for the DAISEE Dataset. With these features,
we used the same pipeline in figure 3.8 to extract principal components as seen in
figure 3.11. Similar to figure 3.9, in (a) samples belonging to different engagement
classes are not visually separable in 2D principal component space. However, in (b)
the samples belonging to classes 0 and 1 are almost clearly separable. As seen, the
samples belonging to class 1 are more likely to have lower values of both principal
components and the ones with class 1 are more likely to have the higher values of
both principal components. When compared to the DAISEE experiment, it looks
like the plot in (b) has a more clear separation. The reason for that can be long-term
engagement detection is an easier problem and OpenFace features are more effective
when feature sequences are longer.
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(a) (b)

Figure 3.11. (a) Principle component plot for 195 video clips (combination of train and
test sets of Engagement in the wild dataset) containing samples from all 4 labels. (b)
Principle component plot for 62 video clips sampled from the combination of train and
test sets of Engagement in the wild dataset containing samples from only 0 and 1 labels.

3.2.3 Linear Regression Baseline
Similar to what we have done with DAISEE dataset classification with SVM,

now we will show the performance of PCA features for the different number of
components. This time we will use a Linear regression model since Engagement in
the wild dataset is used for regression tasks. In the table 3.2.3, you can see the MSE
errors for the test set of Engagement in the wild dataset. The lowest achieved MSE
is 0.0958 which can be a simple baseline to compare with deep learning methods.

# components MSE
2 0.1064
5 0.1036
20 0.0981
40 0.0958
45 0.0970

Although Engagement in the wild and Daisee datasets have many similarities
they are also different in many aspects. First of all the duration of the input videos
are very different from each other. In Daisee there is an engagement label for each 10-
second video snippet while in Engagement in the wild there is a single label for each
5-minute video. This is an important difference because the features contributing
to long-term engagement detection will be different than features contributing to
short-term engagement detection. Secondly, there is no conversation with the subject
after watching the content in the Daisee dataset. This makes Engagement in the wild
annotations more reliable because the subject’s own opinion is also considered. On
the other hand, the Daisee dataset has more variety of annotations and in this way,
we are able to learn more about the affective state of subjects. Moreover, in Daisee,
subjects are recorded for longer times which allows us the observe the changes
in affective states more easily. This two dataset has their own advantages and
disadvantages in many aspects. A cross-dataset approach would be an interesting
analysis since these datasets are potentially suitable to be used together.
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Chapter 4

Model Design

In this chapter, the proposed deep learning model will be introduced. The main
motivation in the design of this model is to show that deep learning-based methods
significantly perform better than the naive baselines introduced in chapter 3 and
improve the state-of-the-art results mentioned in chapter 2. The model is inspired
from [34] and improved with various aggregation functions and training techniques.

4.1 Model Architecture

Figure 4.1. The General Architecture of the Model.

In figure 4.1, you can see the overall architecture of the model. This architecture is
a backbone model we will use for all the experiments. There can be slight differences
in some cases. For instance, the regression fusion step will be 4- class classification
majority vote for the Daisee dataset. Also, we will evaluate OpenPose and OpenFace
based models individually without making any fusion. This architecture visualizes
the fundamental steps of the pipeline.
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OpenFace(Xi
hwcm) = Y i

m×n (4.1)
Aggregation(Y i

m×n) = Zia×b (4.2)
LSTM(Zia×b) = T iv (4.3)

MLP (Tv) = Oi (4.4)

First the input videos with l number of frames are divided into video segments
with a window size of m and with j overlapping frames where 1 ≤ m ≤ l,m ∈ Z
and 0 ≤ j ≤ m − 1, j ∈ Z. Second, the video segments are passed to OpenFace
and OpenPose tools for frame-level feature extraction. OpenFace and OpenPose
generates n and mdifferent features respectively for all m frames. The resulting
matrices with shapes m × n and m × k are aggregated by using a subset of the
following functions, {mean, variance, standard deviation, minimum, maximum,
length, mean, and variance of the absolute Fourier transform spectrum and top 3
Fourier coefficients of the one-dimensional discrete Fourier Transform.}[15] and an
aggregation frame size of z where z ≤ m. The aggregation process generates matrices
with new shapes such that a ≤ m, b ≥ n and c ≥ k. Third, the aggregation matrices
are fed into Bidirectional LSTM and Bidirectional GRU units for sequence modeling.
Finally, a fully connected network is used for regression and classification tasks and
the predictions are fused with weighted averaging for regression and majority voting
for classification. The equations from 4.1 to 4.4 shows the same flow in functional
form.

4.2 Feature Extraction
4.2.1 OpenFace

OpenFace provides many different facial features as described in chapter 2. How-
ever, only some of these features are related to the engagement level of a subject.
In order to narrow down the feature space, we will only consider 29 features as
done in [30, 63, 40, 51, 61] which are related to eye gaze, head pose, head rotation,
and facial action units. The eye gaze-related features are, gaze_0_x, gaze_0_y,
gaze_0_z which are eye gaze direction vectors in world coordinates for the left eye
and gaze_1_x, gaze_1_y, gaze_1_z for the right eye in the image. The head pose
related features are pose_Tx, pose_Ty, pose_Tz representing the location of the
head with respect to the camera in millimeters (positive Z is away from the camera).
pose_Rx, pose_Ry, pose_Rz indicates the rotation of the head in radians around
x,y,z axes. This can be seen as pitch (Rx), yaw (Ry), and roll (Rz). The rotation
is in world coordinates with the camera being the origin. Finally, we will use the
following 17 facial action unit intensities varying in the range 0−5 listed in 2.4 named
as, AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r,
AU12_r, AU14_r, AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r, AU45_r.
For each clip, we have an input matrix with size m× n which indicates the number
of image frames captured from the video and the feature values mentioned above for
each image frame.
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4.3 Feature Aggregation
The common approach described in chapter 2 and also shown in figure 2.9

is aggregating information from multiple frames selected by a sliding window ap-
proach. The most common aggregation statistics are minimum, maximum, and
variance/standard deviation of the signal in a window. Including more complex
hand-crafted features can add valuable information but each additional hand-crafted
feature increases the feature dimension as much as the number of standard features
it is applied. Different from previous works, in addition to standard statistics like
we also considered the spectral centroid (mean) and variance of the absolute Fourier
transform spectrum and the Fourier coefficients of the one-dimensional discrete
Fourier Transform of video snippet. In the experiments, it is observed that best
performances are achieved by using only common aggregation statistics such as
minimum, maximum, and variance. In equations 4.5 to 4.10, you can see the aggre-
gation operation in functional form. More specifically, a frame size of z is selected
and each feature of consecutive z frames are aggregated with minimum, maximum
and variance functions and concatenated in-frame direction. Finally, the resulting
matrices from 3 functions concatenated in feature direction and the resulting matrix
Zia×b with a frames and b features is achieved for video snipped i.

⊕aj=0(Min(Y ij
z×n)) = αia×n ∀j = 0, ..., a and a = m

z
(4.5)

⊕aj=0(Max(Y ij
z×n)) = βia×n ∀j = 0, ..., a and a = m

z
(4.6)

⊕aj=0(V ar(Y ij
z×n)) = γia×n ∀j = 0, ..., a and a = m

z
(4.7)

⊕aj=0(Std(Y ij
z×n)) = τ ia×n ∀j = 0, ..., a and a = m

z
(4.8)

⊕aj=0(Mean(Y ij
z×n)) = θia×n ∀j = 0, ..., a and a = m

z
(4.9)

αia×n ⊕ βia×n ⊕ γia×n ⊕ τ ia×n ⊕ θia×n = Zia×b (4.10)

4.4 Sequence Model

Figure 4.2. Long-Short Term Memory cell [64]



4.4 Sequence Model 27

4.4.1 BI-LSTM
For the sequence model, we used a bi-directional LSTM model following with an

MLP for classification and regression tasks. In figure 4.2, you can see the illustration
of an LSTM cell. Given an input video sequence Z = (z1, ..., za) and za ∈ R, the
hidden sate for each frame is calculated as shown in equations from 4.11 to 4.15.
The σ refers to sigmoid activation function and i, f, o and c are respectively the
input gate, forget gate, output gate and cell activation vectors, all of which are the
same size as the hidden vector h.

it = σ(Wzixt +Whiht−1) +Wcict−1 + bi) (4.11)
ft = σ(Wzfxt +Whfht−1) +Wcfct−1 + bf ) (4.12)
ct = ftct− 1 + ittanh(Wzcxt +Whcht−1 + bc) (4.13)
ot = σ(Wzoxt +Whoht−1) +Wcoct−1 + bo) (4.14)
ht = ottanh(ct) (4.15)

The Bi-directional LSTM model with MLP is shown in figure 4.3. The Figure
shows two unfolded LSTM layers representing forward and backward sequence flow
for T time steps. For each video snippet, the hidden state vectors from beginning
to end and end to beginning are computed and then concatenated. The resulting
vector is then passed to an MLP for classification or regression of engagement for
each video snippet.

Figure 4.3. Bi-LSTM model with MLP [64]

We believe that the proposed architecture is a good fit for this problem for
many reasons. First, the usage of OpenFace and OpenPose features. Many works
in the literature are considering pre-trained convolutional neural networks such as
ResNet [27], VGG [47] and Inception [49] for frame-level feature extraction. These
networks are trained on large-scale datasets like ImageNet [36] which is a dataset
containing images from various domains. However, OpenPose and OpenFace use
many different pre-trained networks that are trained on datasets for specific tasks
such as gaze estimation, body pose estimation, and facial action recognition. In
other words, OpenFace and OpenPose provide more tailored information for the
engagement detection task. Second, feature aggregation. According to the best of our
knowledge, none of the works using the DAISEE dataset consider feature aggregation
[30, 50, 18, 37, 39, 45]. Feature aggregation requires manual selection of aggregation
functions and they can be called hand-crafted features. Using hand-crafted features
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is against the spirit of using deep neural networks since one of the most fundamental
benefits of deep learning is automatic feature extraction and selection. However, as
described in chapter 3, the datasets are considerably small and imbalanced. These
obstacles make it very hard to design a system that can automatically learn the
aggregation functions. For this reason, providing an effective set of aggregation
functions increases the performance of the sequence models in the training process.
Finally, the use of sequence models is fundamental to model the temporal aspect of
the video data. The use of sequence models are very common in most the works in
this domain.
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Chapter 5

Experiments and Results

The main motivation of this thesis is to extract and analyze facial features to
show the relationship between those features and the engagement level of the subjects.
Until now, the model pipeline and datasets for the engagement detection task are
described. In this chapter, we will describe the training procedure, experiments,
and results for both Daisee and Engagement in the wild datasets. Both datasets
come with advantages and challenges. In order to achieve the best performance
on both datasets, different training approaches were applied and experiments were
reported under different scenarios. For the DAISEE dataset, the main challenge
is the imbalanced samples as mentioned in chapter 3. To deal with this, frame
aggregation and a 2-step training approach are proposed different from previous
works. The proposed model is also tested on the survey dataset described in 3 and
machine performance is compared with human performance. For Engagement in
the wild dataset, the existing architecture in [61] simplified and tuned. In addition
to that, a novel training procedure is proposed with triplet loss [5]. Moreover, the
effect of facial features is analyzed and compared. The contribution of each facial
feature is computed with integrated gradients as described in chapter 2. Finally, the
best-performing model is tested on real-life scenarios.

5.1 Daisee Dataset
5.1.1 Training

In chapter 3, we described the challenges of Daisee dataset in detail. In this
section we will describe 3 different training strategies which are;

• Training without frame aggregation.

• Training with frame aggregation.

• Fine-tuning best model with pre-trained boredom weights.

When training without aggregation, we will pass feature sequences directly to
Bi-LSTM units without any manipulation. For all the strategies mentioned above,
only OpenFace features described in section 4.2.1 are used.

Training Parameters

The training parameters are selected with hyperparameter tuning on the model
without frame aggregation. After finding the best parameter values in the search
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space with the grid search method, same parameter values are used for models with
frame aggregation. The parameter values are;

• LSTM parameters:
number of hidden units: 256
number of layers: 2

• MLP parameters:
num neurons 1st layer: 128
num neurons 2nd layer: 32
num neurons 3rd layer: 4

• Training Parameters:
Batch size: 64
Learning rate: 0.0005
Number of epochs: 30
Dropout probability : 0.2

5.1.2 Results
In table 5.1, the 5-fold cross-validation accuracy results of four different inputs

are presented. To compare with the previous work, we combined the train and
validation set proposed by the dataset providers. The best performance is achieved
by aggregating 10 consecutive frames and calculating the following statistics mean,
variance, maximum, minimum and standard deviation for each feature sequence. Like
training parameters, the aggregation functions are also considered as hyperparameters
and selected according to their contribution to the accuracy. In table 5.2, you can
see the recall and f1 scores of low engagement level samples for four different inputs.
By looking at the table we can say that class 0 recall and f1 scores are increasing
until aggregation with 10 consecutive frames. Moreover, for class 1 recall and f1
scores, they increase as the aggregated frame number increases. So we can claim
that information coming from aggregated functions helps identification of low-level
engagement level samples even there are so few in numbers.

Input type average cv acc best cv acc best cv loss
no aggregation 0.5980 0. 6343 0.7827

aggregation num frames =5 0.6182 0. 6519 0.7415
aggregation num frames =10 0.6266 0. 6674 0.7013
aggregation num frames = 15 0.6182 0. 6512 0.7155
Table 5.1. accuracy and cross entropy losses for no aggregation and aggregation inputs.

As suggested in section 3.1.1, Now we will train the model with boredom labels
and then fine-tune with engagement labels. First, the dataset used in previous
experiments (table 5.1) was randomly divided into two. The first part of the dataset
is used with 5-fold cross-validation to train with boredom labels. The input feature
sequences are aggregated per 10 frames since this is the best performing input format
as shown in 5.1. The same hyperparameters are used to train with boredom labels.



5.1 Daisee Dataset 31

Then for fine-tuning with engagement labels, the second part of the dataset is used
again with 5-fold cross-validation. Moreover, the learning rate is reduced to 0.0001.
In this way, the average 5-fold cross-validation score is increased to 0.6442, which
is better than the current SOTA by [4]. This suggested model is called Bi-lstm
2stage. In figure 5.1 you can see 5-fold cross-validation scores of various models on
the DAISEE dataset. The figure shows highest accuracy is achieved by the proposed
Bi-LSTM 2stage method. According to the best of our knowledge, it is the only
method using other labels of the DAISEE dataset.

In figure 5.2, The train and validation loss curves are shown for all 5 folds off
cross-validation. The steps on the x-axis represent each gradient update so the
number of steps per epoch is the number of samples dived by the batch size. In
this case, there are around 86 steps per epoch. The training error for all folds is
decreasing and the model stats to over-fit around 9-10 epochs for all folds. The
validation curve looks similar almost in all folds except the last one shown by the
pink curve. For that fold, the cross-entropy loss is higher than the others.

Results on test set

There are very few works in literature providing the performance of the model
on the test set. However, it is crucial to compare test set results to confirm the
models are not over-fitting to the validation dataset. In figure 5.3, you can see
confusion matrices for four different methods. The models with the highest accuracy
are achieved by the Resnet-TCN and Resnet LSTM models. However, these models
are only making high-level engagement predictions. This is counterintuitive because
distinguishing between high and low levels of engagement is easier compared to
distinguishing between two high-level engagement labels. Moreover, in chapter 3,
we showed that there is no clear separation between samples having both high or
both low-level engagement labels. On the other hand, the proposed Bi-LSTM 2
stage model and Resnet-TCN with weighted sampling and weighted loss have lower
accuracy’s but they also make low-level engagement predictions.

5.1.3 Results on Survey Data
In chapter 3, we showed that human performance on a subset of the DAISEE

dataset is only 35% by providing the results of our survey. In figure 5.4, you can see
the performance of Bi-LSTM 2 stage model on survey data. The accuracy of the
model is only 28% which is slightly better than a random guess. Moreover, there are
very few low engagement predictions. These results clearly show that even though
the Bi-LSTM 2 stage model is able to achieve the highest average cross-validation
accuracy on training, It fails dramatically on survey data. In fact, one shouldn’t
expect the model to perform better than human performance so the achieved low
accuracy can be considered reasonable but the imbalanced predictions show the

Input type class0 recall class0 f1 class1 recall class1 f1
no aggregation 0 0 0 0

aggregation frames 5 0.07 0. 13 0 0
aggregation frames 10 0.23 0.33 0.01 0.01
aggregation frames 15 0.14 0.24 0.03 0.05

Table 5.2. recall and f1 scores of class 0 and class 1 samples for no aggregation and
aggregation inputs.
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Figure 5.1. The performances of models in literature Bi-lstm 2stage is the proposed model.
video-level InceptionNet [26], frame-level InceptionNet [26], C3D feature extraction [26],
C3D averaging + LSTM [41],I3D [67], ResNet + TCN with sampling and weighted loss
[4], C3D + LSTM [41], LRCN [22], C3D fine tuning [54], DFSTN [37], C3D + TCN [4],
DERN [31], ResNet + LSTM [4], ResNet + TCN [4], Bi-lstm 2stage (proposed)

(a) (b)

Figure 5.2. (a) Training loss curves of engagement fine-tuning for all 5 five folds with 10
frame aggregation (b) Validation loss curves of engagement fine-tuning for all 5 five folds
of cross validation with 10 frame aggregation
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(a) (b)

(c) (d)

Figure 5.3. (a) Bi-lstm 2 stage confusion matrix of test set. Accuracy= 47% (b) Resnet-
LSTM [4] confusion matrix of test set. Accuracy=61% (c) Resnet-TCN [4] confusion
matrix of test set. Accuracy=63% (d) Resnet-TCN with weighted sampling and weighted
loss [4] confusion matrix of test set. Accuracy=53%
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(a) (b)

Figure 5.4. (a) classification statistics of Bi-lstm 2 stage model on survey data (b) Confusion
matrix of Bi-lstm 2 stage model on survey data.

model fails the learn the relation between facial features and engagement level but
only fits the noise in the data.

5.2 Engagement in the wild
In the previous section, we show that the proposed Bi-LSTM 2 stage model is

able to achieve the state-of-the-art result on a 5-fold cross-validation dataset but
fails to predict low-level engagement classes on the survey dataset. In order to create
a more robust model that can detect both low and high levels of engagement levels, a
similar model is trained on Engagement in the wild dataset. Engagement in the wild
dataset has some advantages compared to the DAISEE dataset. First, the labels are
more balanced compared to the DAISEE dataset. Second, engagement detection is
considered a regression problem, and MSE loss is used in training. MSE is more
suitable than categorical cross-entropy loss to engagement detection tasks since it
considers the distance between engagement labels. Finally, the engagement in the
wild dataset, the video duration per label is around 5 minutes. This is very long
compared to the DAISEE dataset which is only 10 seconds. This makes the labels
more reliable since longer video includes more facial expression clues indicating
engagement level. To this end, the proposed model and training procedure for the
engagement regression task on engagement in the wild dataset will be present in this
section. Moreover as a novel approach, we will introduce a triplet loss to measure
the similarity between input videos.

5.2.1 MSE Loss Experiments
Training

The model is similar to the one used for the DAISEE dataset but some parameters
are different. Since Engagement in the wild dataset videos are much longer and
duration is variable, we set a fixed sequence length of 150 and then aggregated the
different number of frames for each video. The sequence lengths,100,150, and 200
are tried to be in line with Daisee experiments and observed that 150 perform the
best. Since the number of aggregated frames varies from sample to sample, we also
considered this as an aggregation function and used Maximum, Minimum, Variance,
Frame number as aggregation functions. Also, the number of LSTM hidden units is
increased to 512, since now there are more parameters with the increasing number



5.2 Engagement in the wild 35

of steps. Finally, the batch size is reduced to 8, because of the small sample size
and the number of epochs is increased to 350.

Results

In the table, 5.3, you can see the performance of the model under different
combinations of feature spaces. The best performance is achieved by using all the
features except head rotation.

Eye Gaze Head Pose Head Rotation Action Units MSE Score
3 7 7 7 0.09135
7 3 7 7 0.06872
3 7 3 7 0.09412
3 3 7 7 0.05814
3 3 3 7 0.06516
3 3 7 3 0.05395
3 3 3 3 0.05411

Table 5.3. Model performance under different combination of feature spaces

It is possible to make some claims according to these results. First, the decrease
in MSE score when eye gaze and head pose features are considered together. As
seen from the first and third row of the table, the MSE score increased when head
rotation features are considered together with eye gaze features. The same behavior
is also visible in the fourth and fifth rows of the table. Eye gaze and head pose
features perform better than Eye gaze, head pose, and head rotation features. Also
in the last two rows, we see that all features without head rotation have slightly
higher MSE score compared to all features together. These results may indicate a
correlation between eye gaze and head rotation features. This makes intuitive sense
because when a subject rotates his/her head, the eye gaze will also change so the
head rotation information can be captured from the eye gaze vector. However, eye
gaze information is more valuable since the subject can look away without rotating
the head but only by moving the eyes. Second, the head pose itself performs well
and dramatically improves performance compared to cases not including the head
pose. This shows head pose is an important feature to detect engagement level.

In figure 5.5, you can see the training and validation MSE losses for 350 epochs
(approximately 7000 steps). The curves are pretty sharp compared to the DAISEE
experiments because of the small batch size. The training loss converges to 0 very
fast but we don’t observe an increase in validatiın loss for a very long time. In fact,
it reaches MSE 0.05395 around 250 epochs.

In figure 5.6, you can see the predictions and ground truth labels for the test set
sample of engagement in the wild dataset. The test videos are grouped according to
their ground truth labels for visual convenience. The green points show the ground
truth labels of the samples and the red points show the predicted engagement level
for the corresponding video sample. The yellow line is the average engagement level
of the predictions in each group. For each group, we see that the average predictions
are different. This shows that the model is able to make predictions for all four levels
of engagement. However, for engagement level 0, the predictions are higher than
expected and in fact closer to engagement level 0.33. Similar behavior is also visible
for engagement level 1 and in this case, the predictions are below expected and closer
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(a) (b)

Figure 5.5. (a) Training loss curve of model with all features for Engagement in the wild
dataset. (b) Validation loss curve of model with all features for Engagement in the wild
dataset

to engagement level 0.66. This shows that the proposed model still suffers from
detecting extreme labels. The model performs the best with samples having a ground
truth engagement level 0.66. Here we see that the average predicted engagement is
very close to 0.66. However, there are 5 samples out of range 0.4− 0.8 which can
be considered as outliers. Overall we can say that the model is able to distinguish
between four engagement levels but with some variability. The performance of the
proposed model is compared with other studies on literature in figure 5.7. we can
see that the proposed model performs better than the current state of the art with
a margin on the test set provided by engagement in the wild dataset.

5.2.2 MSE & Triplet Loss Experiments
Now, we will combine the MSE loss with Triplet loss. Triplet loss is a loss

function where a baseline (anchor) sample is compared with a positive and negative
sample. The distance between anchor and positive sample is maximized and the
distance between anchor and negative is minimized. In equation 5.1, the triplet
loss function is defined. Where N is the batch size; d is the euclidean distance and
margin is a non negative margin representing the minimum difference between the
positive and negative distances that is required for the loss to be 0.

`(a, p, n) = L = {l1, . . . , lN}>, li = max{d(ai, pi)− d(ai, ni) + margin, 0} (5.1)

Training

In figure 5.8, the training procedure with triplet loss is illustrated. Each sample
in a batch is considered as anchor input and for each anchor, a positive and a
negative sample is randomly selected. In order to distinguish between low-level and
high-level engagement samples, engagement level samples 0− 0.33 and 0.66− 1 are
grouped together. Depending on the label of the anchor sample, a positive and a
negative sample are selected randomly from these two groups. After that, the triplet
loss is calculated from the hidden states of the last layer of Bi-LSTM units. Finally,
it is summed with the MSE loss of anchor sample to form the new loss.
We believe that introducing triplet loss is suitable to improve the performance for
some reasons. First of all, by grouping low-level and high-level engagement level
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Figure 5.6. The predicted (red) and ground truth (green) engagement labels of Engagement
in the wild dataset. The yellow line represents the average score of predicted label scores
for each label class.

Figure 5.7. The performances of models in literature. Wu et al. [61] score: 0.061110, Wang
et al. [58] score: 0.0717, Huynh et al. [52] score: 0.0597, Wu et al. [62] score: 0.061740,
Yang et al. [63] score: 0.0717, Niu et al. [40] score: 0.0724, Thomas et al. [51] score:
0.0792, Chang et al. [12] score: 0.0813, proposed method score: 0.0539
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Figure 5.8. The architecture for Triplet Loss training.

samples together and reducing the number of classes, we believe we created more
reliable classes. Moreover, by introducing the triplet loss, the problem became a
multi-task learning problem. This will introduce an additional regularization and
hopefully improve the over-fitting problem due to very small sample size. By this
way, we better modeled the similaritydissimilarity of samples with triplet loss and
still able to capture 4 different levels of engagement with regression loss.

Results

After experimenting with different subset of features as in table, 5.3, the model
with MSE + triplet loss improved on the state-of-the art and achieved an MSE of
0.05011 on the test set by using all the features shown in table 5.3. In figure 5.9, you
can see the predictions and ground truth labels for the test set sample of engagement
in the wild dataset. Compared with 5.6, the within variance of predictions are
lower. However, the predictions for engagement level 0 is pretty high, the reason
for that is these samples are considered in the same group with engagement level
0.33 samples. Overal, we can say that introducing triplet loss reduced the within
variance of predictions while preserving hierarchy between labels.

5.2.3 Feature Importance
In table 5.3, we showed that some features are more important than others for

engagement detection with some comparative experiments. Now we will use the
Integrated gradients technique [48] introduced in chapter 2 to better interpret the
proposed model. The integral of integrated gradients can be efficiently approximated
via a summation. Simply, sum the gradients at points occurring at sufficiently small
intervals along the straight-line path from the baseline x′ to the input x.

IntegratedGradsi(x) ::= (xi − x′i)×
m∑
k=1

∂F (x′ + k
m × (x− x′))
∂xi

× 1
m

The summation above is computed with captum library [35]. In figure 5.10,
the sum of gradients on the path from a zero baseline to a zero-labeled sample
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Figure 5.9. Test set results of triplet loss training. MSE score:0.05011. The predicted
(red) and ground truth (green) engagement labels of Engagement in the wild dataset.
The yellow line represents the average score of predicted label scores for each label class.

from the test set is shown. The model evaluated here is only trained with gaze
and head pose-related features and maximum, minimum, and variance aggregation
functions. For the sake of simplicity, only the last 10 values of the 150-element
sequence are illustrated. By looking at the values in the figure, we can say that
feature values in the most recent time steps have more importance compared to
feature values in previous time steps. Secondly, we can say that head pose-related
features and variance of eye gaze features are the ones most effective on engagement
level detection.

In [48], authors mention the importance of choosing the baseline and used
zero input baseline model for other sequence modeling tasks such as machine
translation and question classification. Besides the zero baselines, we also computed
the integrated gradients with average values of the feature sequences in training
data as a baseline. However, there is no significant difference in the importance of
features when the baseline is changed.

Importance Eng 0 Eng 0.33 Eng 0.66 Eng 1
1 pose_Tz_var pose_Tz_var pose_Tz_var pose_Tz_var
2 pose_Tz_min pose_Tz_max pose_Tx_var pose_Tz_max
3 pose_Tx_max pose_Tx_max pose_Tx_max pose_Tx_max
4 pose_Tx_min pose_Tx_min pose_Tx_min pose_Tx_min
5 gaze_0_x_var gaze_0_x_var gaze_0_z_var gaze_1_x_var

Table 5.4. 5 most important features for all engagement label groups for the best
performing model.

For the best performing model, the integrated gradients are calculated for all
test samples and averaged for all samples in the same engagement level. In table 5.4,
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Figure 5.10. The sum of gradients on the path from a zero baseline to a zero labeled
sample from the test set.

you can see the top 5 important features for all engagement levels. To calculate the
most important features, the absolute value of features for all time steps are summed
and then sorted in descending order. In the table, we see that head pose-related
features are the top 3 features for all engagement level samples. This indicates that
the head pose is the most important feature for engagement level detection. Thus,
for all engagement levels, the variance of pose_Tz is the most important feature.
This feature refers to the distance between the head and the screen. Moreover, for
all engagement levels, the head pose features are followed by the variance of eye
gaze-related features. These results make intuitive sense and are also in line with
results in table 5.3.

5.2.4 Real Life Performance
The best-proposed model is also tested on real-life engagement detection tasks.

The input videos are divided into 10-second snippets as samples to predict the
engagement level. Then each sample is passed to OpenFace for extraction of eye
gaze, head pose, and facial action unit extraction. After that, the extracted features
are aggregated with minimum, maximum, variance, and length aggregation func-
tions. For each sample, approximately 80 frames are aggregated with 8 overlapping
frames by using a sliding window approach. Finally, the feature matrix is passed to
pre-trained Bi-LSTM-MLP unit for engagement regression.

In figures 5.11 to 5.14, you can see snapshots from different input videos rep-
resenting different levels of engagement.5.11 includes images sampled from video
snippets with engagement levels varying from 0.82 to 0.98. These images represent
the highest engagement level class. Top 2 images have engagement levels 0.903
and 0.982 and the bottom 2 images have engagement levels 0.854 and 0.828. In all
four samples, subjects are staying steady and directly looking at the camera. The
reason for the engagement difference gap between top and bottom images can be the
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distance between the head and the screen. As seen, subjects in top images are more
close to the screen but bottom images are more distant. This can be considered as a
reasonable engagement level assignment since being closer to the screen and looking
straight to the screen may indicate higher engagement.

Figure 5.11. images sampled from video snippets with very high engagement predictions.

In 5.12, you can see sample images sampled from video snippets with engagement
levels varying from 0.60 to 0.68. In the left top image, you can see that the subject’s
face is occluded with some hand movement but the eyes are still looking to the
screen. In the other 3 images, subjects are all looking straight to the screen but
maybe with confusion expression, especially for the bottom right image. However, it
is not trivial to judge the engagement by looking only at these images in this case.
These facial expressions generally occur when the engagement level of the subject
is changing from low to high or high to low. So it makes more intuitive sense to
judge these scenes with the frames before and after. In the appendix, you can see
consecutive images representing the change of engagement levels.

In 5.13, you can see sample images sampled from video snippets with engagement
levels varying from 0.39 to 0.48. These samples represent a low engagement class.
As seen from the figure, none of the subjects are looking at the screen. except for
the top right image, the other subjects look some other place and their head is
straight to the camera but they show profile to view. Here we can claim that eye
gaze and head pose features are effective in low-level engagement level assignment.
The images in the top left and bottom right are very similar. In fact, the head pose
is very similar in both images but in one of them the subject is looking to the top
and in one of them the subject is looking to the bottom. Here we see that model
assigns lower to the subject looking up. In the top right image, The subject’s head
is straight to the screen but his eyes are closed and the engagement level is 0.436.
Intuitively, one would expect a lower engagement level since the eyes are closed.
However, the model gives more importance to head pose than eye gaze information
so in these cases model may not be so accurate. In fact, 0.436 is not a very high
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Figure 5.12. images sampled from video snippets with high engagement predictions.

engagement level and the model is still able to reduce the engagement level with
eye gaze information even though the head pose is straight. This is also a piece of
evidence showing the model is considering other information besides head pose.

Finally, in 5.14, you can see sample images sampled from video snippets with
engagement levels varying from 0.014 to 0.348. These samples represent the lowest
engagement class. For the top right image, the subject’s head is up and looking
top. In this case, engagement level 0.348 is a reasonable prediction. However for the
bottom left The subject is close to the screen, the head position is also not straight
but the engagement level is only 0.277. One reason for that can be frequent head
movement in frames before and after. However, by looking only at this image, it
looks like the model assigned an engagement level lower than it should be. The
images on the right are nice examples of the lowest possible engagement levels. In
the top right, the subject is yawning and in the bottom right the subject is sleeping
and the engagement level is almost zero. This shows that the model can detect the
lowest possible engagement levels.

To sum up, we can say that the proposed model trained on Engagement in the
wild dataset is also able to generate reasonable predictions in real-life scenarios.
Although the predictions made by the model can have high variance, the model
can distinguish between different levels of engagement and successfully predict very
low, low, high, and very high engagement levels. While generating engagement level
predictions, the model gives the highest importance to head pose-related features.
After that, eye gaze-related features are also considered but there is a significant
margin between the importance of head pose and eye gaze-related features. However,
the eye gaze-related features are still relevant and they affect the predictions as
shown in figure 5.13.
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Figure 5.13. images sampled from video snippets with low engagement predictions.

Figure 5.14. images sampled from video snippets with very low engagement predictions.
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Chapter 6

Conclusion, Evaluation and
Future Work

6.1 Conclusion
In this master thesis, the relation between facial expressions/body pose and the

subject’s engagement level is investigated in e-learning environments. Moreover, a
predictive model is proposed for engagement level detection. The proposed model
takes an input of a video snippet recorded while a subject is watching an educative
material and outputs the engagement level for the corresponding part of the video.
The model achieved state-of-the-art results in two publicly available datasets which
are Daisee [26] and Engagement in the wild [34]. the proposed model first extracts
the facial features with OpenFace [8] and aggregates these feature values in time
dimensions with statistical aggregation functions to extract more features. Then the
resulting sequence of features is modeled using recurrent neural networks to exploit
the temporal aspects of the video data and an engagement prediction is generated
for both classification and regression tasks.

For Daisee dataset[26], the main challenge is the imbalanced number of sam-
ples that makes it very hard to predict low-level engagement labels. In order to
overcome this, the proposed architecture is trained in two stages. First, the model
has trained one boredom label which is inversely correlated with engagement and
considerably more balanced. After that, the model is fine-tuned on engagement
labels and achieved an accuracy score of 64.4% on 5-fold cross-validation training.
However, the model still fails to predict low-level engagement classes on test and
survey datasets.

In order to create a predictor that can distinguish between high and low levels of
engagement, the proposed model is trained on Engagement in the wild [34] dataset.
Engagement in the wild dataset has more balanced samples and more reliable labels
since the video duration per label is longer than the DAISEE dataset. The proposed
model achieved an MSE score of 0.0539 on the test set of Engagement in the wild
dataset and the results showed that the model is able to distinguish between four
levels of engagement. In addition to that, the integrated gradients method is used to
analyze feature importance and results showed that head pose and eye gaze related
features are most important for the proposed model.

Finally, the proposed model trained on Engagement in the wild dataset is tested
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on unlabeled videos collected by the authors. The results show that the proposed
model is also able to generate reasonable predictions and distinguish different levels
of engagement on videos from outer sources.

6.2 Evaluation
In this work, we propose an end-to-end deep learning-based system that detects

the engagement level of the subject in an e-learning environment. Experiments
showed that the model is able to distinguish between different levels of engagement.
However, there are some limitations regarding the training data and proposed model.
The Engagement in the wild dataset is very small and contains only around 150
videos. For this reason, the model overfits very quickly for large batch sizes, and
for smaller batch sizes the training proceeds very unstable. The second limitation
is the lack of ethnic diversity in the dataset. The dataset is collected from only
South Asian students. Although we see that this was not a big problem during the
real-life tests. But this is also because the model is only considering head pose and
eye gaze features. Since the model is making very simple decisions only with 2 types
of features, ethnic diversity is not causing a problem in this scenario. Finally, the
reliability of the labels is always a question since engagement level is subjective and
it can change from annotator to annotator. The proposed model is only able to learn
simple clues that can indicate engagement level but in a real e-learning environment,
the engagement level does not only depend on the head pose and eye gaze features.
For example, the subject will be taking notes so he/she will be always looking at
the notebook and screen which will increase the eye gaze variance and predicted as
low engagement by the proposed model.

6.3 Future Work
There are some possible directions to extend and improve this work. The first

thing would be designing a training procedure that will use both Daisee [26] and
Engagement in the wild [34] datasets together. Since these datasets are similar
to each other, one can be used to overcome the challenges on the other. Second,
the feature aggregation part of the model requires manual selection of aggregation
functions and these functions can change when training on different data. To
overcome this, aggregation functions can be replaced with convolutional layers so
that they can be learned from data as in [33]. Finally, a self-supervised learning-based
method can be used to cluster images/videos belonging to the same engagement
category as in [46]. In this way, the reliability problem of engagement level labels
can be avoided.
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Appendix

Figure 6.1. The engagement levels of 22 students selected from the training set with at
least 100 clips per student. The clips are concatenated with respect to time.



53

Figure 6.2. The boredom levels of 22 students selected from the training set. with at least
100 clips per student. The clips are concatenated with respect to time.
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Figure 6.3. The confusion levels of 22 students selected from the training set with at least
100 clips per student. The clips are concatenated with respect to time.
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Figure 6.4. The frustration levels of 22 students selected from the training set with at
least 100 clips per student. The clips are concatenated with respect to time.
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Figure 6.5. The engagement levels of 18 students selected from the training set with at
least 5 clips per student. The clips are concatenated with respect to time.
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